Table 1. Comparison of chemical ingredients in the TAP and M9 growth media. TAP medium is used for growing *Chlamydomonas* heterotrophically or photo-heterotrophically. M9 medium is the standard minimal medium for growing bacteria. Note: Hunter's trace element is an ingredient in the TAP medium. TAP Trace elements and EDTA shown in the table are components in the Hutner's trace element solution. pH of Hutner's solution is adjusted to 6.5 using KOH pellets before it is used to make the TAP medium. Both media have (pH 7-7.2). Acetate in the TAP medium can be substituted with alternative carbon sources. TAP medium minus acetate is the TP medium in our work.

Chemical	Final concentration in	Final concentration
	1 L TAP medium	in 1L M9 minimal
		medium
Na ₂ HPO ₄ -7H ₂ O	-	47.74 mM; M9 salt
KH_2PO_4	0.396 mM; phosphate	22.04 mM; M9 salt
	solution	
K ₂ HPO ₄	0.6 mM; phosphate	-
	solution	
NaCl	-	8.56 mM; M9 salt
NH ₄ Cl	7.48 m; TAP salt	18.69 mM; M9 salt
MgSO ₄ .7H ₂ O	0.405 mM; TAP salt	2 mM
Carbon source	0.1% glacial acetic acid	0.4 % (glucose or any
	(99.7%)	other carbon source)
CaCl ₂ .2H ₂ O	0.4525 mM; TAP salt	0.1mM
Tris base	19.97 mM	
FeSO ₄ .7H ₂ O	0.018 mM; trace	-
	element	
ZnSO ₄ .7 H ₂ O	0.0765mM; trace	-
	element	
H_3BO_3	0. 184 mM; trace	-
	element	
MnCl ₂ .4H ₂ O	0.0256 mM; trace	-
	element	
CuSO ₄ .5H ₂ O	0.0063 mM; trace	-
	element	
$(NH_4)_6Mo_7O_{24}.4 H_2O$	0.00089 mM; trace	-
	element	
CoCl ₂ .6H ₂ O	0.00068 mM; trace	-
	element	
EDTA	134 mM	